
Regression Tests Documentation

Avast Software

Dec 07, 2022

Contents

1 Table of Contents 3
1.1 General Overview . 3
1.2 Creating a New Test . 5
1.3 Specifying Test Settings . 7
1.4 Writing Test Methods . 11
1.5 Tests for Arbitrary Tools . 17
1.6 Support and Feedback . 22

2 Indices 23

i

ii

Regression Tests Documentation

This is a documentation for the regression tests framework. It describes how to write regression tests for RetDec and
its tools, and provides an overview of the supported functions and methods.

The documentation is primarily focused on tests for the RetDec decompiler, i.e. for the retdec-decompiler
script. You can, however, write tests for arbitrary RetDec-related tools, such as fileinfo or unpacker. This is
described in section Tests for Arbitrary Tools. Nevertheless, it is highly recommended to read the whole documenta-
tion, even if you plan to write tests only for a single tool.

Contents 1

https://github.com/avast/retdec-regression-tests-framework/
https://github.com/avast/retdec/

Regression Tests Documentation

2 Contents

CHAPTER 1

Table of Contents

1.1 General Overview

This section contains a general overview of the directory structure for regression tests.

1.1.1 Basic Directory Structure

The root directory of all regression tests is retdec-regression-tests. The tests are structured into subdirec-
tories, where each test is formed by a single subdirectory. Such a subdirectory has to contain:

• A test.py file, which is a test module containing test classes, settings, and methods that check whether the
test passes or fails. Basically, it represents test specification.

• Inputs for the test. These are usually binary files to be decompiled.

A sample test structure looks like this:

regression-tests/
bugs/

invalid-function-name/
input.exe
test.py

features/
main-detection/

input.msvc.exe
input.gcc.elf
test.py

integration/
ack/

ack.exe
test.py

ackermann/
ackermann.exe
test.py

3

Regression Tests Documentation

1.1.2 Outputs from Decompilations

After you run the regression tests, outputs from decompilations are placed into subdirectories named outputs. In
this way, you can check them after the tests finish to see what exactly was generated. These subdirectories are created
inside the corresponding test directory. For example, for retdec-regression-tests/integration/ack,
the outputs are placed into retdec-regression-tests/integration/ack/outputs.

To differentiate between the outputs of different decompilations, the outputs from each decompilation are placed into
a properly named directory. The name is based on the parameters that were passed to the decompiler when the test
ran.

For example, a directory with outputs for the factorial test may contain the following subdirectories and files:

regression-tests/integration/factorial/outputs/
Test_2017 (factorial.x86.gcc.O0.exe)/

factorial.x86.gcc.O0.c
factorial.x86.gcc.O0.c-compiled
factorial.x86.gcc.O0.bc
factorial.x86.gcc.O0.ll
factorial.x86.gcc.O0.c.fixed.c
factorial.x86.gcc.O0.dsm
factorial.x86.gcc.O0.config.json
factorial.x86.gcc.O0.c.log

...
Test_2017 (factorial.x86.clang.O0.exe)/

factorial.x86.clang.O0.c
factorial.x86.clang.O0.c-compiled
factorial.x86.clang.O0.bc
factorial.x86.clang.O0.ll
factorial.x86.clang.O0.c.fixed.c
factorial.x86.clang.O0.dsm
factorial.x86.clang.O0.config.json
factorial.x86.clang.O0.log

1.1.3 Naming Conventions

Directory names can contain characters that are valid on common file systems, except a dot (.). The reason for not
allowing a dot is that it is internally used to separate subdirectories in module names. Python uses a dot to separate
namespaces, anyway. Examples:

features # OK
cool_backend_feature1 # OK
cool-backend-feature2 # OK

cool.backend.feature1 # WRONG: A dot '.' is not allowed by the regression tests
→˓framework.
cool/backend/feature1 # WRONG: A slash '/' is not allowed in a directory name on
→˓Linux.
cool|backend*feature1 # WRONG: Characters '|' and '*' are not allowed on Windows.

The naming of functions, classes, methods, and variables inside test.py files follows standard Python conventions,
defined in PEP8. Example:

def my_function():
my_var = [1, 2, 3]

(continues on next page)

4 Chapter 1. Table of Contents

http://legacy.python.org/dev/peps/pep-0008/

Regression Tests Documentation

(continued from previous page)

class MyClass(BaseClass):
def do_something(self):

...

def do_something_else(self):
...

1.1.4 Summary

To summarize, a test is a subdirectory that is arbitrarily nested inside the root directory and contains a test.py file
and input files. After the tests are run, the output files are placed into a corresponding outputs directory. For every
decompilation, the outputs are placed into a separate subdirectory.

Next, we will learn how to create a new test.

1.2 Creating a New Test

This section describes a way of creating new regression tests.

1.2.1 Basics

To create a new test, perform the following steps:

1. Create a new subdirectory inside the root directory. Example:

regression-tests
integration

ack

The naming conventions are described in General Overview.

2. Create a test.py file inside that directory. Example:

regression-tests
integration

ack
test.py

The structure of this file is described later.

3. Add all the necessary input files to the created directory. Example:

regression-tests
integration

ack
ack.exe
test.py

1.2.2 General Structure of test.py Files

A test.py file has the following structure:

1.2. Creating a New Test 5

Regression Tests Documentation

from regression_tests import *

Test class 1
Test class 2
...

The first line imports all the needed class names from the regression_tests package. You can import them
explicitly if you want, but the import * is just fine in our case1. More specifically, it automatically imports the
following classes, discussed later in this documentation:

• Test

• TestSettings

Also, other useful functions are automatically imported, which we will use later.

Every test class is of the following form:

class TestName(Test):
Settings 1
Settings 2
...

Test method 1
Test method 2
...

The name of a class can be any valid Python identifier, written by convention in CamelCase. Furthermore, it has to
inherit from Test, which represents the base class of all tests. Example:

class AckTest(Test):
...

Every test setting is of the following form:

settings_name = TestSettings(
Decompilation arguments.
...

)

The arguments specify the input file(s), architecture(s), file format(s), and other settings to be used in the test cases.

Finally, there have to be some test methods to check that the decompiled code satisfies the needed properties. Every
test method is of the following form:

def test_description_of_the_test(self):
Assertions
...

A method has to start with the prefix test_ and its name should contain a description of what exactly is this method
testing. This is a usual convention among unit test frameworks. The reason is that when a test fails, its method name
reveals the purpose of the test.

The assertions can be assert statements, assertions from the standard unittest module (self.assertXYZ()), or
specific assertions provided by the classes of the regression tests framework. Example:

1 Do not use the construct import * in real-world projects though because of namespace pollution and other reasons.

6 Chapter 1. Table of Contents

https://docs.python.org/3/library/unittest.html#module-unittest
http://stackoverflow.com/a/2386740

Regression Tests Documentation

def test_ack_has_correct_signature(self):
The following statements assert that in the decompiled C code, there
is an ack() function, its return type is int, and that it has two
parameters of type int.
self.assertTrue(self.out_c.funcs['ack'].return_type.is_int(32))
self.assertEqual(self.out_c.funcs['ack'].param_count, 2)
self.assertTrue(self.out_c.funcs['ack'].params[0].type.is_int(32))
self.assertTrue(self.out_c.funcs['ack'].params[1].type.is_int(32))

The above example uses assertions from the standard unittest module2.

See section Writing Test Methods for more details on how to write test methods and assertions.

1.2.3 Example of a test.py File

The following code is a complete example of a test.py file:

from regression_tests import *

class AckTest(Test):
settings = TestSettings(

input='ack.exe'
)

def test_ack_has_correct_signature(self):
The following statements assert that in the decompiled C code,
there is an ack() function, its return type is int, and that it
has two parameters of type int.
self.assertTrue(self.out_c.funcs['ack'].return_type.is_int(32))
self.assertEqual(self.out_c.funcs['ack'].param_count, 2)
self.assertTrue(self.out_c.funcs['ack'].params[0].type.is_int(32))
self.assertTrue(self.out_c.funcs['ack'].params[1].type.is_int(32))

Next, we will learn the details of specifying test settings.

1.3 Specifying Test Settings

This section gives a detailed description of how to specify settings for regression tests. It also describes the relation of
test settings to test cases.

1.3.1 Basics

Test settings are specified as class attributes inside test classes, described in section Creating a New Test. The general
form is

settings_name = TestSettings(
arg1=value1,
arg2=value2,
...

)

2 The assertions in the standard unittest module are historically named by using CamelCase instead of snake_case.

1.3. Specifying Test Settings 7

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#module-unittest

Regression Tests Documentation

The name can by any valid Python identifier, written conventionally in snake_case. The arguments and values
specified in the initializer of the used settings class define the parameters to be used for decompilations. For example,
you may specify the input file or the used architecture. The selected arguments and values are then used to create
arguments for the decompiler. For example, the following settings specify the input file and prescribe the use of the
x86 architecture:

settings = TestSettings(
input='file.exe',
arch='x86'

)

From the above settings, the following retdec-decompiler argument list is automatically created:

retdec-decompiler file.exe -a x86

For a complete list of possible arguments to the initializer, see the description of DecompilerTestSettings.

Every argument can be either a single value or a list of values. When you specify a single value, it will be used for all
decompilations. However, if you specify multiple values, a separate decompilation is run for all of them. For example,
consider the following test settings:

settings = TestSettings(
input='file.exe',
arch=['x86', 'arm']

)

For such settings, the following two decompilations are run:

retdec-decompiler file.exe -a x86
retdec-decompiler file.exe -a arm

That is, the regression tests framework runs a single decompilation for every combination of the values specified in
the settings.

1.3.2 Test Cases and Their Creation

A test case is an instance of your test class with an associated decompilation. Recall that a test class is a class that
inherits from Test (see section Creating a New Test). As described above, when you specify settings with some
arguments having multiple values (e.g. several architectures), a separate decompilation is run for all of them. For
every decompilation, a test case is created, and all its test methods are called.

For example, consider the following test:

class Sample(Test)
settings = TestSettings(

input='file.exe',
arch=['x86', 'arm']

)

def test_something1(self):
...

def test_something2(self):
...

For this test, the following two test cases are created:

8 Chapter 1. Table of Contents

Regression Tests Documentation

Sample (file.exe -a x86)
Sample (file.exe -a arm)

The two test methods are then called on each of them:

Sample (file.exe -a x86)
test_something1()
test_something2()

Sample (file.exe -a arm)
test_something1()
test_something2()

1.3.3 Classes Having Multiple Settings

You may specify several settings in a test class. This is handy when you want to use different settings for some
decompilations. For example, consider the following class:

class Sample(Test)
settings1 = TestSettings(

input='file1.exe',
arch=['x86', 'arm']

)
settings2 = TestSettings(

input='file2.elf',
arch='thumb'

)

Test methods...

We want to decompile file1.exe on x86 and arm, and file2.elf on thumb. From this test class, the following
three test cases are created:

Sample (file1.exe -a x86)
Sample (file1.exe -a arm)
Sample (file2.elf -a thumb)

1.3.4 Arbitrary Parameters for the Decompiler

If you look at the complete list of possible arguments (DecompilerTestSettings), you see that not all
retdec-decompiler parameters may be specified as arguments to TestSettings. The reason is that
retdec-decompiler provides too many parameters and their support in the form of arguments would be cumber-
some. However, it is possible to specify arbitrary arguments that are directly passed to the retdec-decompiler
via the args argument:

class Sample(Test):
settings = TestSettings(

input='file.exe'
arch='x86',
args='--select-decode-only --select-functions func1,func2'

)

These settings result into the creation of the following decompilation:

1.3. Specifying Test Settings 9

Regression Tests Documentation

retdec-decompiler file.exe -a x86 --select-decode-only --select-functions func1,func2

In a greater detail, the args argument is taken, split into sub-arguments by whitespace, and passed to the
retdec-decompiler. The argument list internally looks like this:

['file.exe', '-a', 'x86', '--select-decode-only', '--select-functions', 'func1,func2']

Hint: When it is possible to specify a retdec-decompiler parameter in the form of a named argument (like
architecture or endianness), always prefer it to specifying raw arguments by using the args argument. That is, do not
write

class Sample(Test):
settings = TestSettings(

input='file.exe'
args='-a x86' # Always prefer using arch='x86'.

)

The reason is that named arguments are less prone to changes in retdec-decompiler. Indeed, when such an
argument changes in retdec-decompiler, all that has to be done is changing the internal mapping of named
arguments to retdec-decompiler arguments. No test needs to be changed.

If you want to specify separate arguments for several decompilations for single settings, place them into a list when
specifying the settings. For example, consider the following test class:

class Sample(Test):
settings = TestSettings(

input='file.elf'
arch='x86',
args=[

'--select-decode-only --select-functions func1,func2',
'--select-decode-only --select-functions func3'

]
)

It results into these two decompilations:

retdec-decompiler file.elf -a x86 --select-decode-only --select-functions func1,func2
retdec-decompiler file.elf -a x86 --select-decode-only --select-functions func3

You can also specify multiple settings, as already described earlier in this section.

1.3.5 Specifying Input Files From Directory

When there is a lot of input files, the directory structure may become less readable (the test.py file is buried
among input files). In a situation like this, you may put the input files into a directory (e.g. input) and use
files_in_dir() to automatically generate a list of files in this directory:

settings = TestSettings(
input=files_in_dir('inputs')

)

You can also specify which files should be included or excluded:

10 Chapter 1. Table of Contents

Regression Tests Documentation

settings = TestSettings(
input=files_in_dir('inputs', matching=r'.*\.exe', excluding=['problem-file.exe'])

)

1.4 Writing Test Methods

This section gives a description of how to write test methods. It also presents a brief overview of the available
assertions.

1.4.1 Basics

Test methods are written in the same way as unit tests with the standard unittest module. Moreover, the base class for
all tests, Test, inherits from unittest.TestCase. Therefore, you can use anything that is available in the unittest
module, including assertion methods.

Every test method has to be begin with suffix test. Examples:

def test_something(self):
...

def test_something_else(self):
...

Its name should contain a description of what exactly is this method testing. This is the usual convention among unit
test frameworks. The reason is that when a test fails, its method name reveals the purpose of the test.

Inside test methods, you can write your assertions about the decompiled code, or even about the decompilation itself.
To write an assertion, you can either use the standard assert statement from Python, or you can use the assertions
from the unittest module. For example, the following two assertions are functionally equivalent:

def test_ack_has_proper_number_of_parameters(self):
Using the assert statement:
assert self.out_c.funcs['ack'].param_count == 2
Using a method from the unittest module:
self.assertEqual(self.out_c.funcs['ack'].param_count, 2)

Hint: Even though both of these assertions are functionally equivalent, the assertions from the unittest module provide
more useful output. For example, imagine that the decompiled function ack() has a different number of parameters
than two. The first assertion fails with the following message:

FAIL: test_ack_has_proper_number_of_parameters (integration.ack.Test)
--
Traceback (most recent call last):
File "integration/ack/test.py", line 34, in test_ack_has_proper_number_of_parameters

assert self.out_c.funcs['ack'].param_count == 2
AssertionError

In contrast, the second assertion fails with this message:

FAIL: test_ack_has_proper_number_of_parameters (integration.ack.Test)
--
Traceback (most recent call last):

(continues on next page)

1.4. Writing Test Methods 11

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html?highlight=unittest.testcase#unittest.TestCase
https://docs.python.org/3/library/unittest.html?highlight=unittest#assert-methods
https://docs.python.org/3/library/unittest.html?highlight=unittest#assert-methods

Regression Tests Documentation

(continued from previous page)

File "integration/ack/test.py", line 36, in test_ack_has_proper_number_of_parameters
self.assertEqual(self.out_c.funcs['ack'].param_count, 2)

AssertionError: 3 != 2

That is, you can see that the decompiled function has three parameters, but we were expecting two. Such a piece of
information is not provided if you use the assert statement.

1.4.2 Automatically Performed Verifications

There are verifications that are performed automatically for every test case. Currently, there is only one such verifica-
tion:

• The decompilation succeeded, i.e. it did not fail or timeout.

When the above verification fails (e.g. the decompilation timeouted), the test is ended with a failure without even
running the test methods. Therefore, you do not have to manually test that the decompilation was successful.

Sometimes, however, you expect the decompilation to fail. For example, when the input file format is unsupported and
you want to verify that a proper error message is emitted. In such cases, you can disable the automatic verification in
the following way:

class Test(Test):
settings = TestSettings(

input='mips-elf64'
)

def setUp(self):
Prevent the base class from checking that the decompilation
succeeded (we expect it to fail).
pass

def test_decompilation_fails_with_correct_error(self):
assert self.decompiler.return_code == 1
assert self.decompiler.log.contains(r"Error: Unsupported target format 'ELF64

→˓'.")

1.4.3 Accessing Decompilation and Outputs

The corresponding decompilation is available in the self.decompiler attribute, which is of type Decompiler.
It provides access to the decompilation itself and to the produced files. Some of the available attributes are:

• self.decompiler.args - Arguments for the decompilation (DecompilerArguments).

• self.decompiler.return_code - Return code of the decompilation (int).

• self.decompiler.timeouted - Has the decompilation timeouted (bool)?

• self.decompiler.log - Full log from the decompilation (Text).

• self.decompiler.fileinfo_output - Output from fileinfo (FileinfoOutput).

• self.decompiler.fileinfo_outputs - A list of outputs from fileinfo (list of FileinfoOutput).
This is handy when fileinfo ran multiple times (e.g. when the input file is packed).

• self.decompiler.out_c - Output C (Module).

• self.decompiler.out_dsm - Output DSM (Text).

12 Chapter 1. Table of Contents

Regression Tests Documentation

• self.decompiler.out_ll - Output LLVM IR (Text).

• self.decompiler.out_config - Output configuration file (Config).

For a complete list of attributes Decompiler provides, see its documentation.

Hint: As a shortcut, the Test class provides the following attributes:

• self.out_c - Output C (alias to self.decompiler.out_c).

• self.out_dsm - Output DSM (alias to self.decompiler.out_dsm).

• self.out_ll - Output LLVM IR (alias to self.decompiler.out_ll).

• self.out_config - Output configuration file (alias to self.decompiler.out_config).

That is, you can write, e.g, self.out_c and self.out_dsm instead of self.decompiler.out_c and
self.decompiler.out_dsm.

1.4.4 Accessing Test Settings

The settings used for the particular decompilation can be accessed through self.settings, which is of type
TestSettings. This allows you to write assertions that depend on the input settings. Example:

if '--select-functions' in self.settings.args:
Specific assertions for selective decompilation.
...

1.4.5 Verifying Text Outputs

Text outputs, like the decompilation log, output C, output LLVM IR, or output DSM, are instances of Text. Instances
of this class behave like strings and provide all the methods the standard str class provides (documentation). Apart
from them, however, it also contains a special method contains() that can be used to verify whether the output
contains the given regular expression. Example:

assert self.out_c.contains(r'printf\("%d", \S+ / 4\);')
assert self.out_dsm.contains(r'; function: factorial')
assert self.out_ll.contains(r'dec_label_pc_400010')
assert self.decompiler.log.contains(r'# DONE')

1.4.6 Verifying C Outputs

Every C output is a text output. This means that all the methods of Text also work on C outputs. Nevertheless, C
outputs, which are of class Module, provide a far richer interface for verifying the correctness of the decompiled
C file. Indeed, as we see shortly, you can check whether the decompiled C contains the given functions, number of
parameters, includes, comments, etc.

Available Entities

Class Module provides access to the following entities:

• the source code as a string (self.out_c, which is a string-like object),

• global variables (Variable),

1.4. Writing Test Methods 13

https://docs.python.org/3/library/stdtypes.html?highlight=str#textseq
https://docs.python.org/3/library/re.html?highlight=re#module-re

Regression Tests Documentation

• functions (Function),

• comments (Comment),

• includes (Include),

• string literals (StringLiteral),

• structures (StructType),

• unions (UnionType),

• enumerations (EnumType).

Supported types:

• void (VoidType),

• integral types (IntegralType), with subclasses IntType, CharType, and BoolType,

• floating-point types (FloatingPointType), with subclasses FloatType and DoubleType,

• pointers (PointerType),

• arrays (ArrayType),

• functions (FunctionType),

• structures (StructType),

• unions (UnionType),

• enumerations (EnumType).

Supported expressions:

• variables (Variable),

• literals (Literal), with subclasses IntegralLiteral, FloatingPointLiteral,
CharacterLiteral, and StringLiteral,

• unary operators (UnaryOpExpr),

• binary operators (BinaryOpExpr),

• ternary operator (TernaryOpExpr),

• casts (CastExpr),

• function calls (CallExpr),

• initializer lists (InitListExpr).

Supported statements in function bodies:

• if (IfStmt),

• switch (SwitchStmt),

• for loop (ForLoop),

• while loop (WhileLoop),

• do-while loop (DoWhileLoop),

• break (BreakStmt),

• continue (ContinueStmt),

• return (ReturnStmt),

14 Chapter 1. Table of Contents

Regression Tests Documentation

• goto (GotoStmt),

• empty statement (EmptyStmt),

• variable definition and assignment (VarDefStmt).

1.4.7 Verifying Configuration Files

Every output configuration file (in the JSON format) is a text file, so just like C files, you can use all the methods of
Text. However, additional attributes and methods are provided to make the verification easier. See the documentation
of Config for more details.

1.4.8 Compiling and Running C Outputs

To check that the generated C output is compilable, use Test.assert_out_c_is_compilable():

self.assert_out_c_is_compilable()

To check that the output C produces the expected output when compiled and run, use Test.
assert_c_produces_output_when_run():

self.assert_c_produces_output_when_run('input text', 'expected output')

It compiles the output C file, runs it with the given input text, and verifies that the output matches.

Hint: By default, the compiled file is run with a 5 seconds timeout. If this value is insufficient, you can increase it by
specifying an explicit timeout:

Increase the timeout to 10 seconds.
self.assert_c_produces_output_when_run('input text', 'expected output', timeout=10)

1.4.9 Running Code Only On Selected Platforms

Some checks should run only on specific platforms (e.g. a test works only on Linux and Windows but not on macOS).
The framework provides the following three functions to check on which operating system the test is running:

• on_linux()

• on_macos()

• on_windows()

Usage example:

if not on_macos():
This code will not be executed when running on macOS.
...

There is no need to import anything (other than the usual from regression_tests import * at the top of a test.py file).

1.4.10 Examples

This sections contains examples of real-world assertions that you can use in your tests.

1.4. Writing Test Methods 15

Regression Tests Documentation

Output C

Check that the output C is compilable.
self.assert_out_c_is_compilable()

Check that the input and output C produce the same output
when compiled and run with the given inputs:
self.assert_c_produces_output_when_run('0 0', 'ack(0, 0) = 1\n')
self.assert_c_produces_output_when_run('1 1', 'ack(1, 1) = 3\n')

Check that there is at least one function.
assert self.out_c.has_funcs()

Check that functions ack() and main() are present (possibly among other
functions).
assert self.out_c.has_funcs('ack', 'main')

If there are many functions, prefer the following way of testing of their
presence. The reason is that when a function is missing, you immediately
know which one is it.
assert self.out_c.has_func('ack')
assert self.out_c.has_func('main')

You can also check that there is a function matching the given regular
expression. This is useful if the exact function name can differ between
platforms or compilers. For example, the name can be sometimes prefixed
with an underscore.
assert self.out_c.has_func_matching(r'_?ack')

Check that there are only two functions: ack() and main().
assert self.out_c.has_just_funcs('ack', 'main')

Check that ack() calls itself recursively.
assert self.out_c.funcs['ack'].calls('ack')

Check that there are no global variables.
assert self.out_c.has_no_global_vars()

Check that there is the given string literal.
assert self.out_c.has_string_literal('Result is: %d');

Check that there is a comment with the number of detected functions, and
that the number of functions detected in the front-end matches the number
of functions detected by the back-end.
assert self.out_c.has_comment_matching(r'.*Detected functions: (\d+) \(\1 in front-
→˓end\)')

Check that the following includes are present.
assert self.out_c.has_include_of_file('stdio.h')
assert self.out_c.has_include_of_file('stdint.h')

Check that main has correct return type, parameter names and types.
assert self.out_c.funcs['main'].return_type.is_int()
assert self.out_c.funcs['main'].params[0].type.is_int()
self.assertEqual(self.out_c.funcs['main'].params[0].name, 'argc')
assert self.out_c.funcs['main'].params[1].type.is_pointer()
self.assertEqual(self.out_c.funcs['main'].params[1].name, 'argv')

(continues on next page)

16 Chapter 1. Table of Contents

Regression Tests Documentation

(continued from previous page)

Check that the ack() function has correct return type, parameter count,
and types.
assert self.out_c.funcs['ack'].return_type.is_int(32)
self.assertEqual(self.out_c.funcs['ack'].param_count, 2)
assert self.out_c.funcs['ack'].params[0].type.is_int(32)
assert self.out_c.funcs['ack'].params[1].type.is_int(32)

You can also use the following methods, which parse the given C type and
check the correspondence.
assert self.out_c.funcs['ack'].params[1].type.is_same_as('int32_t')
assert self.out_c.funcs['ack'].params[1].type.is_same_as('int')

Output DSM

Check that the output DSM contains the given comment.
assert self.out_dsm.contains(r'; function: ack')

Output LLVM IR

Check that the output LLVM IR contains the given label.
assert self.out_ll.contains(r'dec_label_pc_400010')

Output Config

Check that 10 functions are present in the config by using the JSON
representation.
self.assertEqual(len(self.out_config.json.functions), 10)

Decompilation

Check that the log from the decompilation contains
the given front-end phase.
assert self.decompiler.log.contains(r'Running phase: libgcc idioms optimization')

Check that the log from the decompilation contains
the given comment.
assert self.decompiler.log.contains(r'# Done!')

In the next section, you will learn how to write tests for arbitrary tools, not just for the decompiler.

1.5 Tests for Arbitrary Tools

By default, when you specify test settings (see Specifying Test Settings), the tested tool is decompiler. Sometimes,
however, it may be desirable to directly test other tools, such as fileinfo or unpacker, without the need to run a
complete decompilation. This section describes how to write tests for tools other than the decompiler.

1.5. Tests for Arbitrary Tools 17

Regression Tests Documentation

It is assumed that you have read all the previous sections. That is, to understand the present section, you need to know
how to write tests and specify test settings for decompilations.

1.5.1 Specifying the Tool

To specify a tool that differs from the decompiler, use the tool parameter of TestSettings. For example, the
next settings specify that fileinfo should be run with the given input file:

settings = TestSettings(
tool='fileinfo',
input='file.exe'

)

You can use any tool that is present in the RetDec’s installation directory. For example, the following test settings
prescribe to run all unit tests through the retdec-tests-runner.py script:

settings = TestSettings(
tool='retdec-tests-runner.py'

)

Since this script does not take any inputs, the input parameter is omitted.

Note: If you do not explicitly specify a tool, decompiler is used. That is, the following two settings are equivalent:

settings1 = TestSettings(
tool='decompiler',
input='file.exe'

)

settings2 = TestSettings(
input='file.exe'

)

1.5.2 Passing Parameters

As you have already learned, to specify the input file(s), use the input parameter of TestSettings. Remember
that you can pass multiple input files at once:

settings = TestSettings(
tool='fileinfo',
input=['file1.exe', 'file2.exe', 'file3.exe']

)

When you do this, the tool is run separately for each of the input files.

Other parameters may be specified through the args parameter as a space-separated string. For example, to run
fileinfo with two additional parameters --json and --verbose, use the following settings:

settings = TestSettings(
tool='fileinfo',
input='file.exe',
args='--json --verbose'

)

18 Chapter 1. Table of Contents

Regression Tests Documentation

Warning: You cannot specify parameters containing input or output files in this way (e.g. -o file.out). If
you need to specify such parameters to test your tool, contact us.

Currently, the only supported tools with output files are fileinfo and unpacker. For them, the -c param-
eter (for fileinfo) or the -o parameter (for unpacker) are appended automatically by the regression-tests
framework.

1.5.3 Obtaining Outputs and Writing Tests

As with tests for the decompiler, your tool is automatically run and the outputs are made available to you. To ac-
cess them from your tests, use self.$TOOL.$WHAT. For example, for fileinfo tests, use self.fileinfo.
return_code to get the return code or self.fileinfo.output to access the output.

For every tool, the following attributes are available:

• self.$TOOL.return_code: Return (exit) code from the tool (int).

• self.$TOOL.timeouted: Has the tool timeouted (bool)?

• self.$TOOL.output: Output from the tool (Text). It is a combined output from the standard and error
outputs.

If your tool name includes characters out of [a-zA-Z0-9_], all such characters are replaced with under-
scores. For example, for retdec-tests-runner.py, you would use self.retdec_test_runner_sh.
return_code to get its return code.

Hint: This may be cumbersome to type, so for every tool, you can use the self.tool.$WHAT alias to access the
particular output. That is, the following two types of access are equivalent:

assert self.retdec_test_runner_sh.return_code == 0
assert self.tool.return_code == 0

The self.tool alias is available for all tools.

1.5.4 Testing Success or Failure

Instead of checking the return code to verify success or failure, you can use the succeeded or failed attributes.
For example, to verify that fileinfo ended successfully, use

assert self.fileinfo.succeeded

To check that fileinfo failed, use

assert self.fileinfo.failed

This makes tests more readable.

1.5.5 Tools with Extra Support

The regression-tests framework provides extra support for some tools. Such support may include additional test-
settings parameters or attributes that can be used in tests. This section describes these tools. If you need additional
support for your particular tool, contact us.

1.5. Tests for Arbitrary Tools 19

Regression Tests Documentation

Fileinfo

• The output from fileinfo is parsed to provide easier access. See the description of FileinfoOutput for
more details.

• Even though the tool’s name is fileinfo, the tool is internally run via retdec-fileinfo.py. It is a shell
script that wraps retdec-fileinfo and allows passing additional parameters. See its source code for more
details.

IDA Plugin

• The tool’s name is idaplugin. Internally, the tool is run via the run-ida-decompilation.py script.

• The input IDA database file can be specified via the idb parameter when creating test settings.

• The output C file can be accessed just like in decompilation tests: via self.out_c. All C checks are available
(e.g. you can check that only the given function was decompiled).

Unpacker

• The self.unpacker.succeeded attribute checks not only that the return code is zero but also the exis-
tence of the unpacked file.

• It is possible to run fileinfo after unpacking. Just use the following parameter when constructing test
settings: run_fileinfo=True. By default, fileinfo produces verbose output in the JSON format. For a
complete list of supported fileinfo-related parameters, see the description of UnpackerTestSettings.
You may then access the fileinfo run by accessing self.fileinfo (e.g. self.fileinfo.output
gives you access to the parsed output).

1.5.6 Examples

Finally, we can take a look on some examples.

Bin2Pat

• The output YARA file generated by bin2pat is parsed to provide easier access to the YARA rules. See the
description of Yara for more details.

Fileinfo

Regular fileinfo test.

class FileinfoTest(Test):
settings = TestSettings(

tool='fileinfo',
input='sample.exe',
args='--json' # JSON output is easier to parse than the default plain output.

)

def test_correctly_analyzes_input_file(self):
assert self.fileinfo.succeeded

self.assertEqual(self.fileinfo.output['architecture'], 'x86')

(continues on next page)

20 Chapter 1. Table of Contents

Regression Tests Documentation

(continued from previous page)

self.assertEqual(self.fileinfo.output['fileFormat'], 'PE')
self.assertEqual(self.fileinfo.output['fileClass'], '32-bit')

self.assertTrue(self.fileinfo.output['tools'][0]['name'].startswith('GCC'))

Verbose fileinfo with loader_info used.

class FileinfoTest(Test):
settings = TestSettings(

tool='fileinfo',
args='-v',
input='sample.exe'

)

def test_correctly_analyzes_input_file(self):
assert self.fileinfo.succeeded

self.assertEqual(self.fileinfo.output.loader_info.base_address, 0x400000)
self.assertEqual(self.fileinfo.output.loader_info.loaded_segments_count, 2)

self.assertEqual(self.fileinfo.output.loader_info.segments[0].name, '.text')
self.assertEqual(self.fileinfo.output.loader_info.segments[0].address,

→˓0x401000)
self.assertEqual(self.fileinfo.output.loader_info.segments[0].size, 0x500)
self.assertEqual(self.fileinfo.output.loader_info.segments[1].name, '.data')

IDA Plugin

class IDAPluginTest(Test):
settings = TestSettings(

tool='idaplugin',
input='sample.exe',
idb='sample.idb',
args='--select 0x1000' # main

)

Success is checked automatically (you do not have to check it manually).

def test_correctly_decompiles_main(self):
assert self.out_c.has_func('main')

Unpacker

class UnpackerTest(Test):
settings = TestSettings(

tool='unpacker',
input='mpress.exe'

)

def test_correctly_unpacks_input_file(self):
assert self.unpacker.succeeded

1.5. Tests for Arbitrary Tools 21

Regression Tests Documentation

class UnpackerTest(Test):
settings = TestSettings(

tool='unpacker',
input='upx.exe',
run_fileinfo=True # Run fileinfo afterwards so we can check section names.

)

def test_unpacked_file_has_correct_section_names(self):
assert self.unpacker.succeeded
sections = self.fileinfo.output['sectionTable']['sections']
self.assertEqual(len(sections), 4)
self.assertEqual(sections[0]['name'], '.text')
self.assertEqual(sections[1]['name'], '.rdata')
self.assertEqual(sections[2]['name'], '.data')
self.assertEqual(sections[3]['name'], '.reloc')

The next, last section concludes this documentation.

1.6 Support and Feedback

Congratulations! You have successfully reached the end of the API documentation (or you have just skipped to the
end to see whether the butler did it). Anyhow, if you have any questions, remarks, or suggestions, feel free to contact
us.

22 Chapter 1. Table of Contents

http://www.barrypopik.com/index.php/new_york_city/entry/the_butler_did_it_murder_mystery_drama_saying

CHAPTER 2

Indices

• genindex

• modindex

23

	Table of Contents
	General Overview
	Creating a New Test
	Specifying Test Settings
	Writing Test Methods
	Tests for Arbitrary Tools
	Support and Feedback

	Indices

